Invent With Nokia Success Story 1

June, 2015

We are presenting you a short dissection (or breakup) of one of our recently granted patent. The granted patent resulted from a submission by one of our inventors in collaboration with a Nokia employee. This dissection will give you a deeper dive into a submission on Invent With Nokia at the same time will provide you a glimpse of technology domain of interest to Nokia.

These are selected extracts from the patent. To get full understanding of the invention, the reader must read the granted patent (US9014977). The extracts in this blog do not by any means interpret or limit the scope of original invention.

Granted Patent: US9014977

Subject: Nokia granted a patent allowing commuters to determine routes efficiently.

Preface: US Patent and Trademark Office (USPTO) officially published a newly granted patent for Nokia on 21st April, 2015 for the priority application 13/924251 filed on June 21, 2013.

Technology Tags: Maps, Navigation, Mobile devices, Traffic control systems, Vehicle parking, Route searching, Navigational instruments

Abstract An approach is provided for determine one or more travel lanes in at least one route segment. This approach involves determining whether to include the at least one route segment in a navigation route based on a minimization of a risk of being blocked by the one or more non-travel lanes.

Background and Problem solved: Service providers and device manufacturers (e.g., wireless, cellular, etc.) are continually challenged to deliver value and convenience to consumers by, for example, providing compelling network services. One area of interest has been the development of mapping and/or navigation applications that provide users of mobile devices with driving assistance services (e.g., route guidance) to improve the quality of their travels. However, there are traditionally many factors that can affect the quality of routing and guidance instructions generated by driving assistance services. For example, congestion caused by the presence of non-travel lanes (e.g., parking lanes, loading lanes, restricted lanes, etc.), particularly in urban areas, can potentially affect travel through those areas. Accordingly, service providers and device manufacturers face significant technical challenges in providing a navigation service that takes into account the presence of non-travel lanes when determining navigation routes.

Below figure illustrate problem faced by users while travelling as a result of on-street parking.

US9014977 Patent Diagram

User of vehicle 611 is navigated through a route to reach his/her destination, whereby the user comes across a street with single driving lane with parking on both sides, vehicles 601 and 603 are parked on the right hand side and vehicle 605 and 607 are parked on the left hand sides. The vehicle of the user is blocked by vehicle 609 attempting to park at a parking space upon departure of the vehicle 605. The available option for the owner of the vehicle 611 is to either request the respective drivers of the blocking vehicle 609 to move his/her vehicle or wait for the blocking vehicle to be properly parked. This process is time consuming and substandard especially in a situation when the users of the blocked vehicles are travelling in time constraint.

Description of one of the Embodiment:

According to one of the embodiment, an apparatus comprises at least one processor, and at least one memory including computer program code for one or more computer programs, the at least one memory and the computer program code configured to, with the at least one processor, cause, at least in part, the apparatus to determine one or more non-travel lanes in at least one route segment. The apparatus is also caused to determine one or more non-travel lanes in at least one route segment. The apparatus is further caused to determine whether to include the at least one route segment in a navigation route based, at least in part, on a minimization of a risk of being blocked by the one or more non-travel lanes.

FIG. 4 is a flowchart of a process for determining a probability of an obstruction in at least on route segment based, at least in part, on a ratio of the number of non-travel lanes to the number of travel lanes, according to one embodiment;

US9014977 Patent Diagram

In step 401, the travel platform 109 may determine the risk of being blocked by the one or more non-travel lanes based, at least in part, on a number of the one or more non-travel lanes included in the navigation route.

In step 403, the travel platform 109 may determine at least one ratio of the number of the one or more non-travel lanes to another number of one or more travel lanes in the at least one route segment, wherein (a) the determination of whether to include the at least one route segment in the navigation route, (b) the minimization of the risk of being blocked, or (c) a combination thereof is based, at least in part, on the at least one ratio.

In step 405, the travel platform 109 may determine a probability of obstructed travel through the at least one route segment resulting from vehicle movement between the one or more non-travel lanes and the one or more travel lanes, wherein (a) the determination of whether to include the at least one route segment in the navigation route, (b) the minimization of the risk of being blocked, or (c) a combination thereof is further based, at least in part, on the probability.

FIG. 5 is a flowchart of a process for determining a weighing factor for at least one route segment based, at least in part, on one or more characteristics of a non-travel lane, according to one embodiment;

US9014977 Patent Diagram

In step 501, the travel platform 109 may determine one or more characteristics of the one or more non-travel lanes, wherein (a) the determination of whether to include the at least one route segment in the navigation route, (b) the minimization of the risk of being blocked, or (c) a combination thereof is based, at least in part, on the one or more characteristics. In one embodiment, the one or more characteristics include physical dimension information. In one scenario, the travel platform 109 may further determine whether to include one or more route segment in a navigation route based, at least in part, on the length and width of the one or more non-travel lane, one or more travel lane, or a combination thereof In one scenario, the travel platform 109 may determine a navigation route by taking into account the number of parking lanes and the number of driving lanes in a road segment. Subsequently, the travel platform 109 may adjust a penalty for each road segment based on the ratio of number of parking lane over the number of driving lane.

In step 503, the travel platform 109 may determine a weighting factor for the at least one route segment based, at least in part, on the one or more travel lanes, wherein (a) the determination of whether to include the at least one route segment in the navigation route, (b) the minimization of the risk of being blocked, or (c) a combination thereof is based, at least in part, on the weighting factor. In one scenario, the travel platform 109 may determine to include a route segment in the navigation route based, at least in part, on a determination that the route segment has fewer non-travel lanes compared to the other route segments. In one scenario, the travel platform 109 may determine the number and/or the length and/or the width of non-travel lanes. Then, the travel platform 109 may select a route segment based, at least in part, on the determination, to minimize the risk of obstruction during travel to one or more destinations.

US9014977 Patent Diagram

In one embodiment, the travel platform 109 acknowledges that unsystematic parking by vehicles leads to other vehicle being blocked, therefore the travel platform 109 assists the users in reducing the risk of being stuck in a street by finding a suitable route where the chances of user's vehicle being blocked is very minimal. As a result, in FIG. 6B, the user of vehicle 619 may be navigated through a single lane parking (vehicles 613, 615 and 617 are parked on the left hand side of the street) to minimize blocking of the vehicle by the parking vehicles and/or the departing vehicle from the non-travel lane. The travel platform 109 by taking into account the number of non-travel lanes and/or the number of travel lanes in a street, and may provide the users with routing information to reduce the risk of being stuck in a street. In one scenario, the UE 101 may display alternative routes (626) to the user to reach a destination, where route 1 leads to a road with single parking lane and route 2 leads to a road with double parking lane. The travel platform 109 may then recommend a street to the user based on the determined probability of obstruction. In one embodiment, the travel platform 109 may take into consideration the density of the point of interest (POI) in a street while determining at least one route segment.

Stay tuned and keep a look out on the Invent with Nokia blog space (https://inventwithnokia.nokia.com/blog) for more exciting trivia and information.